

Synthèse et étude des propriétés physiques de la phase sous dopée du composé Bi₂Sr₂CaCu₂O_{&δ}

Sonia De Almeida-Didry

Directeur de thèse : Isabelle LAFFEZ

Co-directeur: Yvan SIDIS

Collaborations

Laboratoire d'Electrodynamique des matériaux Avancés (LEMA) Université de Tours (et Blois)

- Isabelle Laffez
- Fabien Giovannelli

Laboratoire Léon Brillouin (LLB) CEA Saclay

- Yvan Sidis
- Philippe Bourges
- Victor Balédent

Plan

Introduction

- Obtention de cristaux de Bi-2212 sous dopés
- Mesures de neutrons du système Bi-2212 sous dopé à 85K (4F1,LLB/2T,LLB/IN20,ILL)

Conclusion

Les Cuprates

Eléments de base :

- plans CuO₂ : variation de la densité électronique par dopage

<u>Questions:</u>

- Rôle des fluctuations AF dans le mécanisme de la supraconductivité
- Origine de la phase de pseudo-gap : amie ou ennemie de la SC ?

Le système étudié: $Bi_2Sr_2CaCu_2O_{*\delta}$ (Bi-2212)

Etape 1

* Comment faire croître des monocristaux de Bi-2212?

- * Comment sous doper le système Bi-2212?
 - Dopage chimique : substitution d'yttrium sur site calcium
 - Dopage par variation du taux d'oxygène
 - Recuit de Bi-2212 sous flux pauvre en oxygène
 - Recuit de Bi-2212 sous ampoule scellée sous vide secondaire.

Cristallogenèse de Bi-2212 Four à images

Dopage à l'Yttrium : Bi₂Sr₂Ca_{1x} Y_xCu₂O_{8+δ}

Obtention de monocristaux inhomogènes et de petite taille

Recuit sous atmosphère pauvre en oxygène

Mélange O₂/Ar (10/90)

pO₂**=0.1** atm

Recuit sous ampoule scellée sous vide

Montée en température de 350 à 550°C en 100h

Etape 2

Ordre magnétique caché dans la phase de pseudo-gap

*déjà observé dans les composés Y-123 et Hg-1201 dans le régime sous dopé.

> B. Fauqué et al, PRL 96 197001 (2006) H.A. Mook et al, PRB 78 020506 (2008) Y. Li et al, Nature 455 372 (2008)

* Ordre potentiellement associé à des courants nanoscopiques.

Objectif: détecter ce signal magnétique dans le composé Bi-2212 sous dopé.

Les pics de Bragg magnétiques et nucléaires sont superposés

- Utilisation de la diffusion de neutrons polarisés
- Mesure sur les positions de Bragg (1,0,L) avec L=2n+1

Diffusion élastique de neutrons polarisés spectromètre 4F1-LLB

Cf Y-123, B. Fauqué et al., PRL 96, 197001 (2006)

Dépendance en L du signal magnétique

dans Y-123

Comparaison avec le diagramme de phases du composé Bi-2212

Ouverture de la phase de pseudo-gap à T*

(mesurée à l'aide des anomalies de résistivité)

A. Kaminski et al, Phys. Rev. Lett., 207003 (2003)

> Brisure de symétrie par renversement du temps dans la phase de pseudogap du système Bi-2212

A. Kaminski et al, Nature, vol 416 (2002)

Etude des fluctuations AF

* Etat SC, fluctuations AF: apparition d'un *pic* de résonance magnétique à une énergie Er. Corrélations? *Anomalies dans le spectre d'excitations des charges de **Bi-2212**

(ARPES, STM, conductivité optique)

Objectif:

Étude dans le <u>régime sous-</u> <u>dopé du système Bi-2212</u>

Mesures de neutrons polarisés Spectromètre IN20-ILL

Conclusion

- Monocristaux sous-dopés de grand volume
- Variation de la Tc possible par traitement post-croissance
- Mesures neutrons :
- mise en évidence d'un signal magnétique élastique en (10L)

Tmag~T*

- Etude des fluctuations AF en (0.5,0.5,L)

neutrons non polarisés : Pic non détecté

neutrans polarisés : Pic de résonance magnétique?

Perspectives

- Confirmer les résultats
- poursuivre les études neutrons
- Etude ARPES, STM, conductivité optique...???